MINISTRY OF EDUCATION AND SCIENCE

KYIV NATIONAL UNIVERSITY OF TECHNOLOGIES AND DESIGN

	ACADEMIC COUNCIL
Chairman of the Acade	emic Council of KNUTD
	_Ivan GRISHCHENKO
(protocol from	2021 No)

EDUCATIONAL AND PROFESSIONAL PROGRAM ____Industrial pharmacy____

Level of higher education second (master's)
Degree of higher education <u>master</u>
Field of know ledge 22 Health care
Specialty 226 Pharmacy, industrial pharmacy
Qualification Master of Pharmacy, industrial Pharmacy

PREFACE

DEVELOPED:	Kyiv national university of technologies and design	
DEVELOPERS:		
	up: <u>Strashnyi Vladyslav</u> , <u>Doctor of Pharmaceuti</u> <u>Department of Industrial Pharmacy</u> , <u>Kyiv National</u>	
	group: •, PhD in Technical Sciences, Associate Professor of the iv National University of Technology and Design	Department of
-	O in Chemical Sciences Associate Professor of the liv National University of Technology and Design	Department of
	D in Chemical Sciences Associate Professor of the liv National University of Technology and Design	Department of
Asmolova Natalia. PhD Production of JSC "Phari	o in Pharmacy, Head of the Department of Development ma Start";	and Research
	ent of the Faculty of Chemical and Biopharmaceutical Ty of Technologyand Design	echnologies of
Approved by the Aca	ademic Council o fthe Faculty of Chemical and E	Biopharmaceutical
Protocol from «»	<u>2021 №</u>	
Dean of the Faculty of C	hemical and Biopharmaceutical Technologies	
(date)	(signature) Olga Baula (initialsandsurname)	
Discussed and recomme	ended at the meeting of the Department of Industria	ılPharmacy _
Protocol from «»	2021 No	
Head of the Department	of Industrial Pharmacy	
(date) (sig	ynature)Vladyslav Strashnyi (initialsandsurname)	
Head of th working gro	vup	

Profile of the educational and professional program in specialty 226 Pharmacy, industrial pharmacy

1 – General information									
Full name of the institution of	Kyiv National University of Technologies and Design,								
higher education and	Department of Industrial Pharmacy								
structuralunit	QiluUniversity of Technology								
Higher education degree and	Level of higher education- master's								
qualification in the original	Higher education degree (Foreign Degree) - MasterDegree								
language	Specialty code - Pharmacy, industrial pharmacy								
The official name of the	Industrial pharmacy								
educational program	Industrial pharmacy								
Type of diploma and scope of	Master's degree, single, 90 ECTS credits								
educational program	Master's degree, single, 90 EC15 credits								
Availability of accreditation	Certificate of accreditation of the specialty UD № 11007789 from								
	08.01.2019								
Prerequisites (Duration of	Retained student status and postponedgraduationcannotexceed 5								
study and degree certificate)	years. Degree certificate: Graduate students in pharmaceutical								
	engineering success fully complete all the courses required by the								
	training plan jointly developed by the Two Sides, and pass the								
	defense organized by the Academic Committee of the Kiev								
	College to obtain the graduation of Qilu University of Technology								
	Certificate and Master's Diploma Pharmacy, Industrial pharmacy								
	of Kiev State University of Technology and Design (Kyiv's								
	Diploma Pharmacy, Industrial pharmacy).								
	The style and effectiveness of the diplomas and degree certificates								
	obtained by the students of the Kiev College are the same as the								
	certificates issued by the first and second parties to the								
	corresponding majors of the national students. Respective								
	countries.								
Language (s)oftraining	English								
Term of the educational	Hetil July 1, 2024								
program	Until July 1, 2024								
Internetaddressofthepermanen	http://kmytd.adv.yo/akta/								
tplacementofthedescriptionofth	http://knutd.edu.ua/ekts/								
eeducationalprogram									
2 1									

2 – Thepurposeoftheeducationalprogram (Training Objectives)

- 1. To master the basic theory of Marxism, to establish patriotism and collectivism, to adhere to discipline and law, to have a strong sense of professionalism and responsibility, to have good moral qualities and academic knowledge and to have physical and mental health;
- 2. To become an internationalized person who can use English industry, read and search for foreign literature, has an international perspective, knows international rules, has the opportunity to cooperate and implement innovations, and can participate in international affairs and international competitions;
- 3. Master a solid basic theory and relevant professional knowledge in the field of pharmaceutical engineering; to seize advanced technologies and technical means to solve this field; understand the status of research and development trends in this area; have the ability to conduct engineering technology research and development and innovation in this area; ability to independently perform engineering projects and engineering management in this field;
- 4. Ability to apply knowledge and skills to address common problems in the pharmaceutical industry, including pharmaceutical manufacturing technologies, active pharmaceutical ingredient research and drug development, new technology development and improvement of existing

technologies and contro	ls on existing products and technologies.
	3 – Characteristics of the educational program
Subject area	71.0% of required courses, of which: state courses 32.3%, professional
(Credit requirements	
and curriculum)	The Master's program in Pharmaceutical Engineering has 2 years and 16
	courses, and the total number of credits is usually 31 credits.
	10 credits for Chinese public courses, 9 credits for professional degrees, 9
	credits for elective courses and 3 credits for practical courses. Of these, 9
	courses are taught by teachers selected by Kyiv State University of
	Technology and Design. China and Ukraine closed one course, and the
	remaining six Chinese courses were taught by Chinese schoolteachers.
Orientation of the	Educational and professional program
program	Educational and professional program
Them ainfocus of the	General program: Industrial pharmacy.
program and	Emphasis:
specialization	- master solid basic theories and relevant professional knowledge in the
	field of pharmaceutical engineering; to seize advanced technologies and
	technical means to solve this field; understand the status of research and
	development trends in this area; to carry out engineering technological
	research and development and innovation in this field; independently carry
	out engineering projects and engineering and technical management in this
	area;
	- solving typical problems in the pharmaceutical industry, including
	technology of pharmaceutical production (production), research of active
	pharmaceutical ingredients and drug development, development of new
	technologies and improvement of existing technologies, control of raw
	materials, reducing the quality of intermediate products.
	The training of postgraduate students in the field of pharmaceutical
program	engineering mainly involves a combination of curriculum, training,
	research training, international academic exchange and training, as well as
	dissertations and implements individual leadership or team leadership. The
4 C ₂₂	course employs foreign experts, the method of teaching English.
	itability of graduates for employment and further study The graduate is suitable for work in the field of scientific and technical
Suitability for employment	activities in the specialty
Fur the rtraining	Lifelong learning to enhance professional, scientific and other activities
rui the itraining	5 – Teaching and assessment
Teaching and learning	Adopt the method of full-time training. Types of courses: Lectures,
l caching and learning	experiments, tutoring. Teaching methods: Full-time teaching methods:
	dictation, presentation (application in lectures and independent work of
	students), derivative method (application of rules and laws in laboratory
	research training), problem-based teaching method, research method
	(students) (Used while working in laboratories). Testing methods: oral test
	(in the process of preparing laboratory tests, using the appropriate form to
	check the quality of educational materials), written test (on site),
	experiment, test (used in Internet monitoring).
	Final format: Exam, test. Means of detecting learning outcomes: list of test
	questions in the classroom, total test sets, total test questions.
Assessment (Medium-	Graduate students in pharmaceutical engineering are implementing an
term screening)	intermediate evaluation and selection system, which is completed by the
	eighth week of the second semester. Assessment is divided into three levels
	of excellent, qualified and unqualified. Graduate students with excellent
	and qualified grades can enter the next stage of study. Graduate students
	with unqualified grades cannot enter the next stage of study, and they need

	to co	omplete unqualified courses. Go to the next stage of training.												
	•	6 – Program competencies												
Integral		to solve complex problems and problems in the pharmaceutical field												
competence (IC)	of profe	essional activity and / or in the learning process that involves research												
	and / or	nd / or innovation C 1 Ability to abstract thinking, analysis and synthesis.												
Generalcompete	GC 1	Ability to abstract thinking, analysis and synthesis.												
ncies(GC)	GC 2	Ability to apply knowledge in practical situations, to accept												
		reasonable decisions to adapt and act in a new situation.												
	GC 3	Ability to communicate public and foreign (business)												
		language both orally and in writing.												
	GC 4	Ability to search, process and analyze information from different												
		sources.												
	GC 5	Ability to plan and manage time.												
	GC 6	Ability to act on the basis of ethical considerations (motives).												
	GC 7	Ability to learn and master modern knowledge.												
	GC 8	Ability to work independently and in a team.												
Professional	PC 1	Ability to demonstrate knowledge of modern technologies for the												
competencies (PC)		production of active pharmaceutical ingredients (API) and												
_		medicines (drugs), the latest technological and special equipment.												
	PC 2	Ability to demonstrate knowledge of the pharmaceutical system												
		quality, standardization of drugs, validation of technological												
		processes and analytical methods, analysis and risk assessment for												
		quality.												
	PC 3	Ability to demonstrate knowledge of design /												
		reconstruction of chemical and pharmaceutical enterprises.												
	PC 4	Ability to apply basic methods of analysis and pharmaco-												
		technological testing of APIs and drugs in research and												
		production activities.												
	PC 5	Ability to develop / select the optimal dosage form of API,												
		excipients; chemical, technological and hardware												
		schemes of API and drug production.												
	PC 6	Possession of modern research methodology and												
		experimental research methods.												
	PC 7	Ability to use software for experimentation, process monitoring.												
	PC 8	Ability to apply domestic and international standards, guidelines,												
		legislation on the development, production and circulation of drugs												
	DG 0	in research and production activities.												
	PC 9	Ability to plan, organize and manage the technological process of												
		production of APIs and drugs in the conditions of pharmaceutical												
		enterprises, including the choice of technology and equipment in												
		accordance with the requirements of Good Manufacturing												
	DC 10	practice (GMP) and life safety.												
	PC 10	Ability to demonstrate the skills of presenting scientific material and												
	PC 11	arguments of written / oral information to the audience.												
	FC 11	Ability to carry out development and design activities												
	DC 12	production, validation and registration documentation.												
	PC 12	Ability to develop methods of quality control of drugs, API and												
		excipients using physical, physico-chemical and chemical control methods.												
	PC 13	Ability to design the production of API and drugs in accordance												
	FC 13	with GMP requirements, to conduct exploratory and expert work at												
		project development.												
		7 – Program learning outcomes												

	Know ledge and understanding:
PLO 1	Know modern mathematical methods and models, to the extent necessary to have a
	mathematical apparatus for their use in the chosen profession.
PLO 2	Know the main laws, patterns, rules and principles of modern production technologies of APIs and drugs, the level of knowledge and understanding of which is sufficient to perform research at the current level, the introduction of new technologies in production, planning / organizing and managing the process.
PLO 3	Know modern methods of development / selection of the optimal dosage form of API, excipients; chemical, technological scheme of production of API and drugs for technology transfer and implementation of innovative projects.
PLO 4	Know the laws, rules and principles of pharmaceutical quality system development, including pharmaceutical development, validation of process and analytical methods, analysis and risk assessment for quality.
PLO 5	Know the rules and principles of design of API and drug production sites, "clean" premises taking into account GMP requirements, analysis and risk assessment for drug quality.
PLO 6	Know the principles and methods of standardization and quality control of drugs, monitoring of the technological process.
PLO 7	Know modern information technology; software and Internet resources for use in the chosen profession.
	Application of know ledge and understanding (skills):
PLO 8	Use the knowledge of modern technologies of production of API and drugs in practice,
	including pharmaceutical development, planning and organization of production.
PLO 9	Apply knowledge of domestic and international standards, guidelines, legislation governing the development, production and circulation of drugs in the development and streamlining of regulatory and technical and registration documentation for new and existing in case of improving their composition, changes in production.
PLO 10	Apply knowledge of the principles of design of API and drug production sites, "clean" premises in practice (project development, technology transfer).
PLO 11	Use modern information and communication technologies in professional activities.
	Be able to organize and perform work on pharmaceutical development, standardization and quality control, process monitoring, analysis and risk assessment, validation of technological processes and analytical methods.
PLO 13	Be able to develop chemical, technological and instrumental schemes for the production of APIs and drugs, perform technological calculations.
PLO14	Be able to choose and calculate the required amount of basic and auxiliary equipment for the production of APIs and drugs, taking into account modern requirements for the technological process and product quality.
PLO 15	
	Formation of views:
PLO 16	Be able to communicate orally and in writing in their native language, English (or other foreign language), including special terminology when conducting a literary search, teaching written and oral research results.
PLO 17	Apply business communication in the professional sphere, knowledge of the basics of business communication in professional activities.
PLO 18	Be able to lead a discussion and teach disciplines in the specialty for the training of junior specialists and bachelors in the pharmaceutical industry.
PLO 19	Be able to summarize information and present it with emphasis on critical assessment
PLO 20	Be able to convey complex ideas and argue them.
	8 – Resource support for program implementation

Staffing	All teachers who, according to the educational and professional program
	(qualification) correspond to the profile and direction of disciplines, have
	the necessary experience of pedagogical work and experience of practical
	work. Foreign teachers take part in the process
Logistics	Logistics allows to fully ensure the educational process during the
	educational cycle of the educational program.
Information and	The program is fully equipped with an educational and methodological
educational and	set of components of the educational program, the availability of which is
methodical support	presented in the modular environment of the educational process KNUTD
	9 – Academic mobility
National credit mobility	Provides the possibility of academic mobility in some components of the
	educational program, ensuring the acquisition of general competencies.
International credit	The program develops prospects for participation and internships in
mobility	research projects and academic mobility programs abroad.
Training of foreign	The main components of the educational program are educational and
applicants for higher	methodical complex for foreign students in English.
education	

${\bf 2.}$ The list of components of the educational-professional program and their logical sequence

List of components of the educational-professional program of the second (master's) level of higher education

	TOTAL VOLUME OF THE EDUCATIONAL PROGRAM	90									
DFCS	Disciplines of free choice of the student	24	test								
	Elective Courses										
	The total amount of required components	66									
	Total from the cycle	60									
EC 11	Master's thesis	21	certification								
EC 10	Pre-diploma practice	9	test								
EC 9	Research practice	6	test								
EC 8	Pharmaceutical system and quality control of medicines funds	3	test								
EC 7	Industrial biotechnology of medicines	3	examination								
EC 6	Validation of technological process and analytical methods	3	examination								
EC 5	Pharmaceutical development of medicines	3	examination								
EC 4	Special equipment and design of chemical and pharmaceutical productions	6	examination								
EC 3	Technologies of active pharmaceutical ingredients	6	examination								
	Professional Degree Courses										
	Total from the cycle	6									
EC 2	Methodology of modern research with basics intellectual property	3	examination								
EC1	Graduate English	3	test								
	Public Degree Courses										
	Mandatory components of the educational program										
1	2	3	4								
Code	Components of the educational program (academic disciplines, term papers (projects), practices, qualification work)	Number of credits	The form of the final control								

3. Forms of certification of applicants for higher education

Forms of certification of applicants for	Attestation of graduates of educational programs is carried out in the form of public defense of diploma
higher education	master's thesis.
Document of higher education	Master's degree with the award of educational qualification: Master of Pharmacy, Industrial Pharmacy

4. Matrix of correspondence of program competencies to the components of the educational-professional program

					1 0													1 - 6	,		
	GC 1	GC2	GC3	GC4	GC5	GC6	GC7	GC8	PC 1	PC 2	PC 3	PC 4	PC 5	PC 6	PC 7	PC 8	PC 9	PC 10	PC 11	PC 12	PC 13
EC 1	*		*	*			*	*						*						*	
EC 2			*	*			*									*			*		
EC 3		*			*		*		*	*			*		*		*	*			
EC 4	*		*	*				*	*	*	*						*	*			*
EC 5	*	*		*		*		*				*		*	*			*	*	*	*
EC 6		*		*		*		*	*			*	*	*	*	*		*		*	*
EC 7			*	*		*	*		*	*			*		*	*					
EC 8	*									*			*	*						*	
EC 9	*		*	*	*			*		*	*	*	*				*	*	*		
EC 10	*		*	*	*			*					*	*	·	·				*	
EC 11	*		*	*				*		*	*	*	*		·	·	*	*	*		

5. Matrix for providing program learning outcomes with relevant components of the educational-professional program

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7	PLO 8	PLO 9	PLO10	PLO11	PLO12	PLO13	PLO14	PLO15	PLO16	PLO17	PLO18	PLO19	PLO20
EC 1	*														*					*
EC 2			*		*					*					*		*			
EC 3		*	*		*		*			*	*		*	*					*	
EC 4	*	*			*	*			*	*			*		*					
EC 5		*	*	*					*			*				*			*	*
EC 6		*	*	*					*			*				*			*	*
EC 7		*	*			*		*	*			*			*	*	*	*		
EC 8	*							*					*	*			*	*		
EC 9	*	*				*	*				*		*	*			*		*	
EC 10	*				*	*	*				*		*	*			*		*	
EC 11		*	*		*					*						*				*